

June 8, 2009

VIA CERTIFIED MAIL

Mary Logan U.S EPA Region V (SR-6J) 77 W Jackson Boulevard Chicago, IL 60604-3590

Sheila Abraham Ohio EPA - NE District Office Div. Of Emergency & Remedial Response 2110 East Aurora Road Twinsburg, OH 44087

Remedial Response Section Manager Ohio EPA - DERR P O. Box 1049 Lazarus Government Center Office 122 South Front Street Columbus, OH 43216-1049

Re: MAY 2009 MONTHLY REPORT

RI/FS & REMEDIAL DESIGN & REMOVAL ACTION

NEASE CHEMICAL SITE

SALEM, OHIO

In accordance with Paragraph X E of the Administrative Order by Consent regarding a Remedial Investigation/Feasibility Study (RI/FS) of the Nease Chemical Site in Salem, Ohio, attached is a copy of the May 2009 RI/FS Progress Report. This report also includes the monthly progress report for the remedial design (OU-2) in accordance with Paragraph X of the Administrative Order on Consent, effective as of May 10, 2006

Additionally, in accordance with Paragraph 14 of the Administrative Order by Consent, signed December 17, 1993, attached is a copy May 2009 Removal Action Progress Report

Sincerely,

Dr Rainer F Domalski Site Coordinator

Enclosures

CC.

M Hardy/Heidi Goldstein – Thompson Hine Steve Finn – Golder Associates, Inc.

060809

US EPA RECORDS CENTER REGION 5

NEASE CHEMICAL SITE, SALEM, OHIO REMEDIAL INVESTIGATION/FEASIBILITY STUDY REMEDIAL DESIGN (OU-2) MONTHLY PROGRESS REPORT MAY 2009

1. INTRODUCTION

This progress report has been prepared in accordance with Paragraph XE of the Administrative Order of Consent (AOC) regarding a Remedial Investigation/Feasibility Study (RI/FS) and Paragraph X of the Administrative Order on Consent regarding the Remedial Design (RD/OU-2) of the Nease Chemical Site in Salem, Ohio. The report summarizes the major RI/FS and RD actions during the month along with investigation results and any problems encountered in the project. Activities planned for next month are also presented.

2 SUMMARY OF ACTIVITIES PERFORMED

2.1 PROJECT ACTIVITY SUMMARY

The activities that were initiated and/or completed during the month are described All activities were performed in accordance with the detailed protocol provided in the approved Work Plan.

2.2 FIELDWORK

2.2.1 RI/FS

None

2.2.2 PDI/RD (OU-2)

In June 2009 additional PDI fieldwork will be conducted as mirex sampling in surface soil, NZVI-injection test, DNAPL and Southeastern Plume delineation.

2.3 Reports

2.3.1 RI/FS

None.

2.3.2 RD (OU-2)

- As discussed in a conference call, Golder is putting together schedules for supplemental OU-2/PDI activities.
- Prepare addendum to revised Vapor Intrusion Report including the results of vapor intrusion sampling in a residential home.
- Submitted work plan for additional NZVI-Pilot Study including fracturing the bedrock and addressed follow-up comments of the agency (May 7,

2009 letter); requested modification to the Class V injection well permit from Ohio EPA.

Prepare Remedial Design Workplan for OU-2.

2.3.3 RD (OU-3)

- ROC is currently negotiating an Administrative Consent Order for the OU-3 Pre-Design and Design including a Statement of Work with US EPA Region V.
- Prepare PDI workplan for OU-3 activities

2.4 MEETINGS

None.

3 VARIATIONS FROM THE APPROVED WORK PLAN

None.

4 RESULTS OF SAMPLING, TESTS AND ANALYSES

Results from sampling events were and will be provided to the agencies in specific reports.

5 PROJECT SCHEDULE

The current Work Plan schedule identifies completion and target dates for project activities. Those scheduled to occur over the next several months include:

- o Finalize OU-2 PDI work incl. Technical Memoranda.
- o Start OU-2 RD workplan
- o Start OU-3 PDI work.

6 DIFFICULTIES ENCOUNTERED AND ACTION TAKEN TO RESOLVE PROBLEMS

No significant difficulties were encountered.

7 PERSONNEL CHANGES

None

8 ANTICIPATED PROJECT ACTIVITIES FOR MAY 2009

- Monthly Progress Report April 2008
- RD (OU-2/3)
 - Fieldwork Mirex surface soil sampling, NZVI-Injection test, further DNAPL investigation, and further Southeastern Plume delineation.

o Baseline Technical Memorandum Report -

- Response to agency recommendations and considerations and for implementation of interim measures for the removal of NAPL at TW06-21.
- Submit letters to adjacent property owner's presenting the sampling results and boring logs for monitoring wells installed in their property.
- Submit addendum to Revised Vapor Intrusion Report.
- Submit schedules for OU-2/3 PDI activities.

TABLE 1 NEASE CHEMICAL SITE, SALEM, OHIO RI/FS AND RD (OU-2) SCHEDULE

DATE	TASK/ACTIVITY/DELIVERABLE/MILESTONE				
	RI/FS	RD (OU-2)			
	Documentation of the Site Activities through July 31, 2004 can be reviewed in the July 2004 Monthly Progress Report Documentation of the Site Activities from August 1, 2004 through December 31, 2008 can be reviewed in the December 2008 Monthly Progress Report				
Jan 9, 2009	Submit Monthly Progress Report				
Jan. 29, 2009		Submit Utility Map Submit Proposal for Additional Mirex surface soil sampling			
Feb. 9, 2009	Submit Mont	hly Progress Report			
Feb 10, 2009		Submit Revised Vapor Instrusion Report and Response Letter to Agencies' Comments to Baseline Technical Memorandum			
Mar 19, 2009	Submit Mont	hly Progress Report			
Aprıl 9, 2009	Submit Mont	hly Progress Report			
May 21, 2009	Submit Monthly Progress Report				
June 8, 2009	Submit Montl	hly Progress Report			

NEASE CHEMICAL SITE, SALEM, OHIO REMOVAL ACTION MONTHLY PROGRESS REPORT MAY 2009

1.0 INTRODUCTION

This progress report has been prepared in accordance with Paragraph 14 of the "Order" section of the Administrative Order by Consent (AOC) Docket No. V-W-94-C-212, effective November 17, 1993 regarding a Removal Action for the Nease Chemical Site in Salem, Ohio The report summarizes the major activities during the month along with investigation results and any problems encountered on the project. Activities planned for next month are also presented.

2.0 SUMMARY OF ACTIVITIES PERFORMED

2.1 PROJECT ACTIVITY

The activities that were initiated and/or completed during this month are described below. Activities were performed in accordance with the Removal Action AOC.

Golder evaluated the performance of the groundwater treatment system and the carbon change-out schedule. Based on the close review of the monthly sampling results, the carbon change-out can be conducted on a 4-month cycle. The carbon units were exchanged at the beginning of March.

A revised sampling schedule approved by the agency will be implemented at the beginning of May 2009.

2.2 WORK PLAN PREPARATION/REPORTS

None

2.3 FIELDWORK

2.3.1 SITE INSPECTIONS

The results of the monthly site inspection carried out at the site on June 1, 2009 are shown in Attachment 1.

2.3.2 MONTHLY WATER LEVEL MEASUREMENTS

The next water level monitoring in wells will ne performed in October 2009.

2.3.3 TREATMENT PLANT OPERATION

The treatment plant operated mostly normal throughout the month.

2.4.1.1 **MEETINGS**

None

3.0 VARIATIONS FROM THE APPROVED REMOVAL ACTION WORK PLAN

None

4.0 RESULTS OF INSPECTIONS, ENVIRONMENTAL SAMPLING, TESTS AND ANALYSES

Water monitoring samples were collected from the treatment plant on May 19, 2009 (Attachments 2). The next acute toxicity evaluations was scheduled for May 2009. The results were not received yet.

5.0 PROJECT SCHEDULE

None.

6.0 DIFFICULTIES ENCOUNTERED AND ACTION TAKEN TO RESOLVE PROBLEMS

None

7.0 PERSONNEL CHANGES

None.

8.0 TYPES AND QUANTITIES OF REMOVED MATERIALS

For the period from May 1 through 31, 2009 the following material was removed:

- 15,200 gallons of leachate and/or backwash water were disposed offsite during this month.
- Approximately 127,996 gallons were pumped from Leachate Collection System 1 (LCS-1) (total for LCS-1 =22,974,101 gal).
- 12,840 gallons were pumped from Leachate Collection System 2 (LCS-2) (total for LCS-2 = 1,817,666 gal).
- No water was pumped from Pond 1 (total for the pond = 1,034,375 gallons).
- Approximately 19 pounds of organic compounds were removed during pumping (estimate based on average VOC/SVOC concentrations for each source).

9.0 ANTICIPATED PROJECT ACTIVITIES FOR JUNE 2009

Removal Action activities scheduled for the upcoming month include on-going implementation of the approved Removal Action Work Plan involving:

- Collection of groundwater from the existing collection systems LCS-1, LCS-2 and Pond 1.
- Monthly Progress Report for May 2009

060809

TABLE 1 NEASE CHEMICAL SITE, SALEM, OHIO REMOVAL ACTION SCHEDULE

DATE	TASK/ACTIVITY/DELIVERABLE/MILESTONE
	Documentation of the Site Activities through July 31, 2004 can be reviewed in the July 2004 Monthly Progress Report
	Documentation of the Site Activities August 1, 2004 through
	December 31, 2008 can be reviewed in the December 2008
	Monthly Progress Report
Jan. 9, 2009	Submit Monthly Progress Report
Feb. 6, 2009	Submit Monthly Progress Report
Mar. 19, 2009	Submit Monthly Progress Report
April 9, 2009	Submit Monthly Progress Report
May 21, 2009	Submit Monthly Progress Report
June 8, 2009	Submit Monthly Progress Report

ATTACHMENT 1

RESULTS OF MONTHLY SITE INSPECTION NEASE CHEMICAL SITE, SALEM, OHIO MAY 2009

SITE INSPECTION FORM RUETGERS-NEASE CORPORATION Nease Site, Salem, Ohio

Date of Inspection: 6-1-0	9	_
Entry Time: 1:00 Hrs.	Exit Time: 1300 HRs.	
Weather: Cloudy 75	<u>-</u>	
Inspector's Name:	Ferald Wilhelm	
Inspector's Company:	Howells and Baird, Inc.	

INSPECTION RESULTS

SPECIFIC OBSERVATIONS:

Structures

(Responses: S = Satisfactory U = Unsatisfactory Yes/No Levels Measured in Feet, N/A = Not Applicable)

	Pump	Quick Connect	Water Level	Berm Erosion	Visible Leakage
Leachate Collection System 1 (LCS-1)	S	S	8.27	N/A	No
Leachate Collection System 2 (LCS-2)	5	S	12.29	N/A	No
Pond 1 Pumphouse	5	S	9.67	NIA	No
Pond 1 Berm	A	N/A	N/A	No	No
Pond 2 Embankment	NA	N/A	NIA	No	NO
Exclusion Area A Embankment	N/A	N/A	NA	No	No
Storage Tank	N/A	S;	3.56	N/A	No
Other (specify)					

SPECIFIC OBSERVATIONS:

Sediment Barriers

Condition of Sediment Barriers

Barrier ID	Fabric Intact?	By Passing Evident?	Is Maintenance Necessary?
Sediment Control Structure 1	Yes	No	No
Sediment Control Structure 2	Yes	No	No
Fabric Barrier 2	Yes	No	No
Fabric Barrier 3	Yes	No	No
Fabric Barrier 4	Yes	No	No
Fabric Barrier 5	Yes	No	No
Fabric Barrier 8	Yes	No	$\mathcal{N}_{\mathcal{O}}$
Fabric Barrier 9	Yes	No	No
Fabric Barrier 10	Yes	No	No
Rock Barrier 1	Yes	No	No
Rock Barrier 2	Yes	\mathcal{V}_{o}	Zo
Pond 7 - North	Yes	No	20
Pond 7 - South	Yes	No	No

SPECIFIC OBSERVATIONS:

Seeps (if present, use more forms, as necessary)

Seep ID (yr-month-#)	Located on Map	Areal Extent (ft 2)	Magnitude (flow?, ponding?)
94-7-1	Yes	20	Non-Flowing Scap
96-8-2	Yes	20	Non-Flowing Seep

Note Seep ID # equal the "nth' observed seep during the yr-month in question

ADDITIONAL OBSE	RVATION OR REMARKS:	
.		
	Gerald C. Wilhelm	
Inspector's Signature:	Derold 2. Willelm	
Date:	6-1-09	

ATTACHMENT 2

WATER SAMPLING RESULTS – MAY 19, 2009 NEASE CHEMICAL SITE, SALEM, OHIO

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user. ______

Rutgers Organics Corporation

PAGE 1

Lot #: A9E200222

SALEM, OH SITE

Date Reported: 6/03/09

		REPORTING		ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD

Client Sample ID: INFLUENT

Sample #: 001 Date Sampled: 05/19/09 13:00 Date Received: 05/20/09 Matrix: WATER

Volatile Organics by GC/MS					Reviewed
Acetone	ND	2000	ug/L	SW846	8260B
Benzene	640	200	ug/L	SW846	8260B
Bromobenzene	ND	200	ug/L	SW846	8260B
Bromochloromethane	ND	200	ug/L	SW846	8260B
Bromodichloromethane	ND	200	ug/L	SW846	8260B
Bromoform	ND	200	ug/L	SW846	8260B
Bromomethane	ND	200	ug/L	SW846	8260B
2-Butanone	ND	2000	ug/L	SW846	8260B
n-Butylbenzene	ND	200	ug/L	SW846	8260B
sec-Butylbenzene	ND	200	ug/L	SW846	8260B
tert-Butylbenzene	ND	200	ug/L	SW846	8260B
Carbon tetrachloride	ND	200	ug/L	SW846	8260B
Chlorobenzene	410	200	ug/L	SW846	8260B
Dibromochloromethane	ND	200	ug/L	SW846	8260B
Chloroethane	ND	200	ug/L	SW846	8260B
Chloroform	74 J	200	ug/L	SW846	8260B
Chloromethane	ND	200	ug/L	SW846	8260B
2-Chlorotoluene	ND	200	ug/L	SW846	8260B
4-Chlorotoluene	ND	200	ug/L	SW846	8260B
1,2-Dibromoethane	ND	200	ug/L	SW846	8260B
Dibromomethane	ND	200	ug/L	SW846	8260B
1,2-Dichlorobenzene	12000	200	ug/L	SW846	8260B
1,3-Dichlorobenzene	ND	200	ug/L	SW846	8260B
1,4-Dichlorobenzene	110 J	200	ug/L	SW846	8260B
Dichlorodifluoromethane	ND	200	ug/L	SW846	8260B
1,1-Dichloroethane	ND	200	ug/L	SW846	8260B
1,2-Dichloroethane	290	200	ug/L	SW846	8260B
cis-1,2-Dichloroethene	16000	200	ug/L	SW846	8260B
trans-1,2-Dichloroethene	50 J	200	ug/L	SW846	8260B
1,1-Dichloroethene	ND	200	ug/L	SW846	8260B
1,2-Dichloropropane	ND	200	ug/L	SW846	8260B
1,3-Dichloropropane	ND	200	ug/L	SW846	8260B
2,2-Dichloropropane	ND	200	ug/L	SW846	8260B
cıs-1,3-Dichloropropene	ND	200	ug/L	SW846	8260B
trans-1,3-Dichloropropene	ND	200	ug/L	SW846	8260B
1,1-Dichloropropene	ND	200	ug/L	SW846	8260B
Ethylbenzene	37 J	200	ug/L	SW846	826 0 B

The results shown below may still require additional laboratory review and are subject to

Ruto t #: A9E200222	gers Organics SALEM, C	_	ion	Date Re	ported:	PAGE 6/03/09
•	·				ANALYTICAL	
PARAMETER	RESULT	REPORTI LIMIT	UNITS	METHO		
Client Sample ID: INFLUENT Sample #: 001 Date Sampled:	05/19/09 13:	00 Date	Received: (05/20/09	Matrıx:	WATER
Volatile Organics by GC/MS						Reviewed
Isopropylbenzene	ND	200	ug/L	SW846	8260B	
p-Isopropyltoluene	ND	200	ug/L	SW846	8260B	
Methylene chloride	ND	200	ug/L	SW846	8260B	
n-Propylbenzene	ND	200	ug/L	SW846	8260B	
Styrene	ND	200	ug/L	SW846	8260B	
1,1,1,2-Tetrachloroethane	ND	200	ug/L	SW846	8260B	
1,1,2,2-Tetrachloroethane	600	200	ug/L	SW846	8260B	
Tetrachloroethene	1100	200	ug/L	SW846	826 0 B	
Toluene	41 J	200	ug/L	SW846	8260B	
1,1,1-Trichloroethane	ND	200	ug/L	SW846	8260B	
1,1,2-Trichloroethane	ND	200	ug/L	SW846	8260B	
Trichloroethene	650	200	ug/L		8260B	
Trichlorofluoromethane	ND	200	ug/L		8260B	
1,2,3-Trichloropropane	ND	200	ug/L		8260B	
1,2,4-Trimethylbenzene	ND	200	ug/L		8260B	
1,3,5-Trimethylbenzene	ND	200	ug/L		8260B	
Vinyl chloride	410	200	ug/L		8260B	
m-Xylene & p-Xylene	ND	400	ug/L		8260B	
o-Xylene	ND	200	ug/L		8260B	
J Estimated result Result is less than RL			J .			
Semivolatile Organic Compounds	s by GC/MS					Reviewed
Anthracene	ND	2500	ug/L	SW846	8270C	
Benzo(a)anthracene	ND	2500	ug/L	SW846	8270C	
Benzo(b) fluoranthene	ND	2500	ug/L	SW846	8270C	
Benzo(k) fluoranthene	ND	2500	ug/L	SW846	8270C	
Benzo(ghı)perylene	ND	2500	ug/L	SW846	8270C	
Benzo(a)pyrene	ND	2500	ug/L		8270C	
Butyl benzyl phthalate	ND	2500	ug/L	SW846	8270C	
Chrysene	ND	2500	ug/L		8270C	
Dibenz(a,h)anthracene	ND	2500	ug/L		8270C	
Di-n-butyl phthalate	ND	2500	ug/L		8270C	
1,2-Dichlorobenzene	7200	2500	ug/L		8270C	
1,3-Dichlorobenzene	ND	2500	ug/L		8270C	
1,4-Dichlorobenzene	ND	2500	ug/L		8270C	
Dimethyl phthalate	ND	2500	ug/L		8270C	

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user. _____

Rutgers	Organics	Corporation
MUCACIO	Organica	COLDOLACTOR

PAGE 3

Lot #: A9E200222

SALEM, OH SITE Date Reported: 6/03/09

		REPORTING		ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD

Client Sample ID: INFLUENT

Sample #: 001 Date Sampled: 05/19/09 13:00 Date Received: 05/20/09 Matrix: WATER

Semivolatile Organic Compounds	by GC/MS					Reviewed
Fluorene	ND	2500	ug/L	SW846	8270C	
Indeno(1,2,3-cd)pyrene	ND	2500	ug/L	SW846	8270C	
2-Methylnaphthalene	ND	2500	ug/L	SW846	8270C	
4-Methylphenol	ND	2500	ug/L	SW846	8270C	
Naphthalene	ND	2500	ug/L	SW846	8270C	
Phenanthrene	ND	2500	ug/L	SW846	8270C	
Phenol	ND	2500	ug/L	SW846	8270C	
Pyrene	ND	2500	ug/L	SW846	8270C	
Phenyl sulfone	ND	500	ug/L	SW846	8270C	
3,4-Dichloronitrobenzene	ND	2500	ug/L	SW846	8270C	
Inorganıc Analysis						Reviewed
Nitrite as N	ND	0.10	mg/L	MCAWW	300.0A	
Nitrate as N	ND	0.10	mg/L	MCAWW	300.0A	
Ammonia Nitrogen	ND	2.0	mg/L	MCAWW	350.2	
pH Aqueous	6.9		No Units	SW846	9040B	
Total phosphorus	ND	0.1	mg/L	MCAWW	365.2	
Filterable Residue (TDS)	540	10	mg/L	MCAWW	160.1	
Non-Filterable	19	4.0	mg/L	MCAWW	160.2	
Residue (TSS)			-			

Client Sample ID: LGAC 2-3

Sample #: 002 Date Sampled: 05/19/09 13:00 Date Received: 05/20/09 Matrix: WATER

Volatile Organics by GC/MS					Reviewed
Acetone	2.0 J	10	ug/L	SW846 8260	В
Benzene	ND	1.0	ug/L	SW846 8260	В
Bromobenzene	ND	1.0	ug/L	SW846 8260	В
Bromochloromethane	ND	1.0	ug/L	SW846 8260	В
Bromodichloromethane	ND	1.0	ug/L	SW846 8260	В
Bromoform	ND	1.0	ug/L	SW846 8260	В
Bromomethane	ND	1.0	ug/L	SW846 8260	В
2-Butanone	ND	10	ug/L	SW846 8260	В
n-Butylbenzene	ND	1.0	ug/L	SW846 8260	В
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260	В
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260	В

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user. _______

1,1,2-Trichloroethane

Rutg	gers Organics Corporation				PAGE 4
Lot #: A9E200222	SALEM, (OH SITE		Date Repor	ted: 6/03/09
		REPORTING	3	ANALYTI	CAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Client Sample ID: LGAC 2-3 Sample #: 002 Date Sampled:	05/19/09 13:	·no Date Re	ecelved. N	5/20/09 Mad	riv. WATER
Sample #. 002 Date Sampled.	03/12/02 13	.oo bace ke	scerved. o	3/20/03 Ha	IIA. WAIDN
Volatile Organics by GC/MS					Reviewed
Carbon tetrachloride	ND	1.0	ug/L	SW846 82	260B
Chlorobenzene	ND	1.0	ug/L	SW846 82	260B
Dibromochloromethane	ND	1.0	ug/L	SW846 82	260B
Chloroethane	ND	1.0	ug/L	SW846 82	:60B
Chloroform	ND	1.0	ug/L	SW846 82	260B
Chloromethane	ND	1.0	ug/L	SW846 82	:60B
2-Chlorotoluene	ND	1.0	ug/L	SW846 82	:60B
4-Chlorotoluene	ND	1.0	ug/L	SW846 82	:60B
1,2-Dibromoethane	ND	1.0	ug/L	SW846 82	:60B
Dibromomethane	ND	1.0	ug/L	SW846 82	:60B
1,2-Dichlorobenzene	0.41 J	1.0	ug/L	SW846 82	26 0 B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 82	:60B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 82	:60B
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 82	
1,1-Dichloroethane	ND	1.0	ug/L	SW846 82	
1,2-Dichloroethane	ND	1.0	ug/L	SW846 82	
cis-1,2-Dichloroethene	0.33 J	1.0	ug/L	SW846 82	
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 82	
1,1-Dichloroethene	ND	1.0	ug/L	SW846 82	
1,2-Dichloropropane	ND	1.0	ug/L	SW846 82	
1,3-Dichloropropane	ND	1.0	ug/L	SW846 82	
2,2-Dichloropropane	ND	1.0	ug/L	SW846 82	
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 82	
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 82	
1,1-Dichloropropene	ND	1.0	ug/L	SW846 82	
Ethylbenzene	ND	1.0	ug/L	SW846 82	
Isopropylbenzene	ND	1.0	ug/L	SW846 82	
p-Isopropyltoluene	ND	1.0	ug/L	SW846 82	
Methylene chloride	ND	1.0	ug/L	SW846 82	
n-Propylbenzene	ND	1.0	ug/L	SW846 82	
Styrene	ND	1.0	ug/L	SW846 82	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 82	
1,1,2,2-Tetrachloroethane	ND	1.0	_	SW846 82	
Tetrachloroethene	ND	1.0	ug/L	SW846 82	
	ND	1.0	ug/L	SW846 82	
Toluene	ND ND	1.0	ug/L		
1,1,1-Trichloroethane	מא	1.0	ug/L	SW846 82	. DUD

(Continued on next page)

ND 1.0 ug/L SW846 8260B

_____ The results shown below may still require additional laboratory review and are subject to

change. Actions taken based on these results are the responsibility of the data user. -------Rutgers Organics Corporation PAGE Lot #: A9E200222 SALEM, OH SITE 6/03/09 Date Reported: REPORTING ANALYTICAL RESULT LIMIT UNITS METHOD Client Sample ID: LGAC 2-3 Sample #: 002 Date Sampled: 05/19/09 13:00 Date Received: 05/20/09 Matrix: WATER Volatile Organics by GC/MS Reviewed Trichloroethene 1.0 ND ug/L SW846 8260B Trichlorofluoromethane ND 1.0 ug/L SW846 8260B 1,2,3-Trichloropropane ND 1.0 ug/L SW846 8260B 1.0 SW846 8260B 1,2,4-Trimethylbenzene ND ug/L 1,3,5-Trimethylbenzene ND 1.0 SW846 8260B ug/L Vinyl chloride ND 1.0 ug/L SW846 8260B m-Xylene & p-Xylene ND 2.0 ug/L SW846 8260B o-Xylene ND 1.0 SW846 8260B ug/L J Estimated result. Result is less than RL Semivolatile Organic Compounds by GC/MS Reviewed Anthracene ND 10 ug/L SW846 8270C ug/L SW846 8270C Benzo(a) anthracene ND 10 Benzo(b) fluoranthene ND 10 ug/L SW846 8270C 10 Benzo(k) fluoranthene ND ug/L SW846 8270C Benzo(qhi)perylene ND 10 ug/L SW846 8270C Benzo(a)pyrene ND 10 ug/L SW846 8270C Butyl benzyl phthalate ND 10 ug/L SW846 8270C Chrysene ND 10 uq/L SW846 8270C ND 10 SW846 8270C Dibenz(a,h)anthracene uq/L ND 10 Di-n-butyl phthalate ug/L SW846 8270C ND 10 SW846 8270C 1,2-Dichlorobenzene ug/L 1,3-Dichlorobenzene ND 10 SW846 8270C ug/L 1,4-Dichlorobenzene ND 10 SW846 8270C ug/L Dimethyl phthalate ND 10 SW846 8270C ug/L SW846 8270C Fluorene ND 10 ug/L SW846 8270C Indeno(1,2,3-cd)pyrene ND 10 ug/L 2-Methylnaphthalene ND 10 SW846 8270C ug/L ND 4-Methylphenol 10 ug/L SW846 8270C Naphthalene ND 10 ug/L SW846 8270C Phenanthrene ND 10 ug/L SW846 8270C ND Phenol 10 ug/L SW846 8270C Pyrene ND 10 ug/L SW846 8270C Phenyl sulfone ND uq/L

(Continued on next page)

ND

3,4-Dichloronitrobenzene

2.0

ug/L

10

SW846 8270C

SW846 8270C

The results shown below may still require additional laboratory review and are subject to

change. Actions taken based on these results are the responsibility of the data user. _____

Rutgers Organics Corporation

PAGE 6

Lot #: A9E200222

SALEM, OH SITE

Date Reported: 6/03/09

REPORTING LIMIT UNITS PARAMETER RESULT METHOD

ANALYTICAL

Client Sample ID: LGAC 2-3

Sample #: 002 Date Sampled: 05/19/09 13:00 Date Received: 05/20/09 Matrix: WATER

Inorganic Analysis Reviewed No Units SW846 9040B pH Aqueous 7.0 MCAWW 160.1 MCAWW 160.2 Filterable Residue (TDS) 510 10 mg/L ND Non-Filterable 4.0 mg/L Residue (TSS)

Client Sample ID: OUTFALL

Sample #: 003 Date Sampled: 05/19/09 13:00 Date Received: 05/20/09 Matrix: WATER

Mercury in Liquid Waste (Manual Mercury	Cold-Vapor) ND	0.00020	mg/L	SW846	7470A	Reviewed
ICP-MS (6020)						Reviewed
Silver	ND	0.0010	mg/L	SW846	6020	
Alumınum	ND	0.050	mg/L	SW846	6020	
Arsenic	0.0017	0.0010	mg/L	SW846	6020	
Beryllıum	ND	0.0010	mg/L	SW846	6020	
Cadmium	ND	0.0010	mg/L	SW846	6020	
Chromium	ND	0.0020	mg/L	SW846	6020	
Copper	ND	0.0020	mg/L	SW846	6020	
Iron	0.62	0.050	mg/L	SW846	6020	
Nickel	0.015	0.0020	mg/L	SW846	6020	
Lead	ND	0.0010	mg/L	SW846	6020	
Antimony	ND	0.0020	mg/L	SW846	6020	
Thallium	ND	0.0010	mg/L	SW846	6020	
Zinc	0.10	0.010	mg/L	SW846	6020	
Organochlorine Pesticides Methoxychlor	ND	0.10	ug/L	SW846	8081A	Reviewed
Organochlorine Pesticides Methoxychlor	ND	0.10	ug/L	SW846	8081A	Reviewed

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

change. Actions taken based on these results are the responsibility of the data user.

Rutgers Organics Corporation

PAGE 7

Lot #: A9E200222

SALEM, OH SITE

Date Reported: 6/03/09

REPORTING ANALYTICAL PARAMETER RESULT LIMIT UNITS METHOD

Client Sample ID: OUTFALL

Sample #: 003 Date Sampled: 05/19/09 13:00 Date Received: 05/20/09 Matrix: WATER

Volatile Organics by GC/MS					Reviewed
Acetone	ND	10	ug/L	SW846 8260B	
Benzene	ND	1.0	ug/L	SW846 8260B	
Bromobenzene	ND	1.0	ug/L	SW846 8260B	
Bromochloromethane	ND	1.0	ug/L	SW846 8260B	
Bromodichloromethane	ND	1.0	\mathtt{ug}/\mathtt{L}	SW846 8260B	
Bromoform	ND	1.0	ug/L	SW846 8260B	
Bromomethane	ND	1.0	${\tt ug/L}$	SW846 8260B	
2-Butanone	ND	10	ug/L	SW846 8260B	
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B	
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B	
tert-Butylbenzene	ND	1.0	${\tt ug/L}$	SW846 8260B	
Carbon tetrachloride	ND	1.0	${\tt ug/L}$	SW846 8260B	
Chlorobenzene	ND	1.0	${\tt ug/L}$	SW846 8260B	
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B	
Chloroethane	ND	1.0	ug/L	SW846 8260B	
Chloroform	ND	1.0	ug/L	SW846 8260B	
Chloromethane	ND	1.0	${\tt ug/L}$	SW846 8260B	
2-Chlorotoluene	ND	1.0	\mathtt{ug}/\mathtt{L}	SW846 8260B	
4-Chlorotoluene	ND	1.0	\mathtt{ug}/\mathtt{L}	SW846 8260B	
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B	
Dibromomethane	ND	1.0	${\tt ug/L}$	SW846 8260B	
1,2-Dichlorobenzene	0.29 J	1.0	ug/L	SW846 8260B	
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B	
1,4-Dichlorobenzene	ND	1.0	$\mathtt{ug/L}$	SW846 8260B	
Dichlorodifluoromethane	ND	1.0	\mathtt{ug}/\mathtt{L}	SW846 8260B	
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
1,3-Dichloropropane	ND	1.0	${ t ug/L}$	SW846 8260B	
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B	

The results shown below may still require additional laboratory review and are subject to

change. Actions taken based on these results are the responsibility of the data user. Rutgers Organics Corporation PAGE Lot #: A9E200222 SALEM, OH SITE Date Reported: 6/03/09 REPORTING ANALYTICAL RESULT LIMIT UNITS METHOD Client Sample ID: OUTFALL Date Sampled: 05/19/09 13:00 Date Received: 05/20/09 Matrix: WATER Sample #: 003 Volatile Organics by GC/MS Reviewed Ethylbenzene ND 1.0 ug/L SW846 8260B 1.0 Isopropylbenzene ND ug/L SW846 8260B 1.0 ND p-Isopropyltoluene uq/L SW846 8260B Methylene chloride ND 1.0 ug/L SW846 8260B n-Propylbenzene ND 1.0 ug/L SW846 8260B 1.0 ug/L Styrene ND SW846 8260B 1,1,1,2-Tetrachloroethane ND 1.0 ug/L SW846 8260B 1,1,2,2-Tetrachloroethane ND 1.0 ug/L SW846 8260B Tetrachloroethene ND 1.0 ug/L SW846 8260B Toluene ND 1.0 SW846 8260B ug/L 1,1,1-Trichloroethane ND 1.0 ug/L SW846 8260B 1.0 1,1,2-Trichloroethane ND ug/L SW846 8260B Trichloroethene ND 1.0 ug/L SW846 8260B Trichlorofluoromethane ND 1.0 SW846 8260B ug/L 1,2,3-Trichloropropane ND 1.0 ug/L SW846 8260B SW846 8260B 1,2,4-Trimethylbenzene ND 1.0 uq/L 1,3,5-Trimethylbenzene ND 1.0 SW846 8260B ug/L 1.0 SW846 8260B Vinyl chloride ND ug/L m-Xylene & p-Xylene ND 2.0 ug/L SW846 8260B o-Xylene ND 1.0 ug/L SW846 8260B J Estimated result Result is less than RL. Semivolatile Organic Compounds by GC/MS Reviewed Anthracene ND 10 ug/L SW846 8270C ND 10 Benzo(a)anthracene ug/L SW846 8270C ND 10 SW846 8270C Benzo(b) fluoranthene ug/L ND 10 SW846 8270C Benzo(k) fluoranthene ug/L Benzo(ghi)perylene ND 10 ug/L SW846 8270C Benzo(a)pyrene ND 10 ug/L SW846 8270C ND 10 SW846 8270C ug/L Butyl benzyl phthalate ND 1.0 SW846 8270C Chrysene ug/L

(Continued on next page)

10

10

1.0

10

ug/L

ug/L

ug/L

uq/L

SW846 8270C

SW846 8270C

SW846 8270C

SW846 8270C

ND

ND

ND

ND

Dibenz (a, h) anthracene Di-n-butyl phthalate

1,2-Dichlorobenzene

1,3-Dichlorobenzene

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

t #: A9E200222	SALEM,	s Corporation DH SITE		Date Reported:	PAGE 6/03/09
		REPORTI	NG	ANALYTICAL	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Olivert Court To OUMBALL					
Client Sample ID: OUTFALL Sample #: 003 Date Sample	npled: 05/19/09 13	:00 Date	Received: 05,	/20/09 Matrix:	WATER
Semivolatile Organic Cor	mpounds by GC/MS				Reviewed
1,4-Dichlorobenzene	ND	10	ug/L	SW846 8270C	
Dimethyl phthalate	ND	10	ug/L	SW846 8270C	
Fluorene	ND	10	ug/L	SW846 8270C	
Indeno(1,2,3-cd)pyrene	e ND	10	ug/L	SW846 8270C	
2-Methylnaphthalene	ND	10	ug/L	SW846 8270C	
4-Methylphenol	ND	10	ug/L	SW846 8270C	
Naphthalene	ND	10	ug/L	SW846 8270C	
Phenanthrene	ND	10	ug/L	SW846 8270C	•
Phenol	ND	10	ug/L	SW846 8270C	
Pyrene	ND	10	ug/L	SW846 8270C	
Phenyl sulfone	ND	2.0	ug/L	SW846 8270C	
3,4-Dichloronitrobenze	ene ND	10	ug/L	SW846 8270C	
Inorganic Analysis					Reviewed
Biochemical Oxygen Der	mand ND	2	mg/L	MCAWW 405.1	
Weak Acid Dissociable		0.010	mg/L	SM18 4500-CN-	-I
Chemical Oxygen Demand	d ND	20	mg/L	MCAWW 410.4	
N-Hexane Extractable Material (1664A)	ND	5.0	mg/L	CFR136A 1664A	A HEM
Nitrite as N	ND	0.10	mg/L	MCAWW 300.0A	
Nitrate as N	0.30	0.10	mg/L	MCAWW 300.0A	
Ammonia Nitrogen	ND	2.0	mg/L	MCAWW 350.2	
pH Aqueous	7.0		No Units	SW846 9040B	
Total phosphorus	ND	0.1	mg/L	MCAWW 365.2	
Filterable Residue (Ti	OS) 520	10	mg/L	MCAWW 160.1	
Total Organic Carbon	ND	1	mg/L	SW846 9060	
Non-Filterable Residue (TSS)	ND	4.0	mg/L	MCAWW 160.2	

Volatile Organics by GC/MS ug/L Acetone SW846 8260B 3.5 J 10

ug/L Benzene ND 1.0 SW846 8260B

Reviewed

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

Ruto Lot #: A9E200222	gers Organic SALEM, O	-	n	Date Rep	ported:	PAGE 10 6/03/09
PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALY: METHOI		
Glinat Granda ID. MDID DIANK						
Client Sample ID: TRIP BLANK Sample #: 004 Date Sampled:	05/19/09 13	:00 Date Red	celved: 0	5/20/09 t	Matrix:	WATER
Volatile Organics by GC/MS						Reviewed
Bromobenzene	ND	1.0	ug/L	SW846	8260B	
Bromochloromethane	ND	1.0	ug/L	SW846	8260B	
Bromodichloromethane	ND	1.0	ug/L	SW846	8260B	
Bromoform	ND	1.0	ug/L	SW846	8260B	
Bromomethane	ND	1.0	ug/L	SW846	8260B	
2-Butanone	ND	10	ug/L	SW846	8260B	
n-Butylbenzene	ND	1.0	ug/L	SW846	8260B	
sec-Butylbenzene	ND	1.0	ug/L	SW846	8260B	
tert-Butylbenzene	ND	1.0	ug/L	SW846	8260B	
Carbon tetrachloride	ND	1.0	ug/L		8260B	
Chlorobenzene	ND	1.0	ug/L	SW846	8260B	
Dibromochloromethane	ND	1.0	ug/L		8260B	
Chloroethane	ND	1.0	ug/L		8260B	
Chloroform	ND	1.0	ug/L		8260B	
Chloromethane	ND	1.0	ug/L		8260B	
2-Chlorotoluene	ND	1.0	ug/L		8260B	
4-Chlorotoluene	ND	1.0	ug/L		8260B	
1,2-Dibromoethane	ND	1.0	ug/L		8260B	
Dibromomethane	ND	1.0	ug/L		8260B	
1,2-Dichlorobenzene	ND	1.0	ug/L		8260B	
1,3-Dichlorobenzene	ND	1.0	ug/L ug/L		8260B	
		1.0	_			
1,4-Dichlorobenzene	ND		ug/L		8260B	
Dichlorodifluoromethane	ND	1.0	ug/L		8260B	
1,1-Dichloroethane	ND	1.0	ug/L		8260B	
1,2-Dichloroethane	ND	1.0	ug/L		8260B	
cis-1,2-Dichloroethene	ND	1.0	ug/L		8260B	
trans-1,2-Dichloroethene	ND	1.0	ug/L		8260B	
1,1-Dichloroethene	ND	1.0	ug/L		8260B	
1,2-Dichloropropane	ND	1.0	ug/L		8260B	
1,3-Dichloropropane	ND	1.0	ug/L		8260B	
2,2-Dichloropropane	ND	1.0	ug/L		8260B	
cis-1,3-Dichloropropene	ND	1.0	ug/L		8260B	
trans-1,3-Dichloropropene	ND	1.0	ug/L		8260B	
1,1-Dichloropropene	ND	1.0	ug/L		8260B	
Ethylbenzene	ND	1.0	ug/L	SW846	8260B	
Isopropylbenzene	ND	1.0	ug/L	SW846	8260B	
p-Isopropyltoluene	ND	1.0	ug/L	SW846	8260B	

The regults shown below may still require additional laboratory region and are subject to

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

	Rutgers Organics Corporation		PAGE	11
E200222	SALEM, OH SITE	Date Reported:	6/03/	/09

Lot #: A9E200222	SALEM	, OH SITE		Date Reported:	6/03/09
		REPORT	_	ANALYTICAL	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Client Sample ID: TRIP BLANK Sample #: 004 Date Sampled:	05/19/09	13:00 Date	Received:	05/20/09 Matrix:	WATER
Jampie III Joi Jaco Jampiea	00, 23, 03	10.00 2000		00,20,03 114022111	***************************************
Volatile Organics by GC/MS					Reviewed
Methylene chloride	ND	1.0	ug/L	SW846 8260B	
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B	
Styrene	ND	1.0	ug/L	SW846 8260B	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B	
Toluene	ND	1.0	ug/L	SW846 8260B	
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Trichloroethene	ND	1.0	ug/L	SW846 8260B	
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B	
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B	
1,3,5-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B	
Vinyl chloride	ND	1.0	ug/L	SW846 8260B	
m-Xylene & p-Xylene	ND	2.0	ug/L	SW846 8260B	
		1 0	· ,_		

1.0

ug/L

SW846 8260B

o-Xylene

Client Sample ID: AGAC 1-2

Sample #: 005 Date Sampled: 05/19/09 13:00 Date Received: 05/20/09 Matrix: AIR

ND

Volatile Organics by TO14 A (Lov	/ Level)				Reviewed
Benzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Bromodichloromethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Bromoform	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Carbon tetrachloride	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Chlorobenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Dibromochloromethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Chloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Chloroform	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
1,2-Dibromoethane (EDB)	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Dibromomethane	ND	1.0	ppb(v/v)	EPA-2 TO-14A	
1,2-Dichlorobenzene	8.3	0.50	ppb(√√)	EPA-2 TO-14A	
1,3-Dichlorobenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	

J Estimated result Result is less than RL

The results shown below may still require additional laboratory review and are subject to

0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS	EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A	Reviewed
9 13:00 Date 1) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	ppb(v/v) ppb(v/v) ppb(v/v) ppb(v/v) ppb(v/v) ppb(v/v) ppb(v/v)	/20/09 Matrix: EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A	Reviewed
0.50 0.50 0.50 0.50 0.50 0.50 0.50	ppb(v/v) ppb(v/v) ppb(v/v) ppb(v/v) ppb(v/v)	EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A	Reviewed
0.50 0.50 0.50 0.50 0.50 0.50 0.50	ppb(v/v) ppb(v/v) ppb(v/v) ppb(v/v) ppb(v/v)	EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A	Reviewed
0.50 0.50 0.50 0.50 0.50 0.50 0.50	ppb(v/v) ppb(v/v) ppb(v/v) ppb(v/v)	EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A	
0.50 0.50 0.50 0.50 0.50 0.50	ppb(v/v) ppb(v/v) ppb(v/v) ppb(v/v)	EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A	
0.50 0.50 0.50 0.50 0.50	ppb(v/v) ppb(v/v) ppb(v/v) ppb(v/v)	EPA-2 TO-14A EPA-2 TO-14A EPA-2 TO-14A	
0.50 0.50 0.50 0.50 0.50	ppb(v/v) ppb(v/v) ppb(v/v)	EPA-2 TO-14A EPA-2 TO-14A	
0.50 0.50 0.50 0.50	ppb(v/v) ppb(v/v)	EPA-2 TO-14A	
0.50 0.50 0.50	ppb(v/v)		
0.50 0.50	= =	EPA-2 TO-14A	
0.50	ppb(v/v)	Tru 5 TO TAN	
		EPA-2 TO-14A	
	ppb(v/v)	EPA-2 TO-14A	
0.50	ppb(v/v)	EPA-2 TO-14A	
0.50	ppb(v/v)	EPA-2 TO-14A	
0.50	ppb(v/v)	EPA-2 TO-14A	
0.50	ppn (v / v)	EPA-2 10-14A	
	1.0 1.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	1.0	1.0

The results shown below may still require additional laboratory review and are subject to

change. Actions taken based on these results are the responsibility of the data user.

Rutgers Organics Corporation PAGE 1.3 Lot #: A9E200222 SALEM, OH SITE Date Reported: 6/03/09 REPORTING ANALYTICAL PARAMETER RESULT UNITS METHOD LIMIT Client Sample ID: AGAC F Sample #: 006 Date Sampled: 05/19/09 13:00 Date Received: 05/20/09 Matrix: AIR Volatile Organics by TO14 A (Low Level) Reviewed Dibromochloromethane 0.50 ppb(v/v) EPA-2 TO-14A Chloroethane ND 0.50 ppb(v/v) EPA-2 TO-14A Chloroform ND 0.50 ppb(v/v) EPA-2 TO-14A ppb(v/v) 1,2-Dibromoethane (EDB) ND 0.50 EPA-2 TO-14A ppb(v/v) Dibromomethane ND 1.0 EPA-2 TO-14A 1,2-Dichlorobenzene ND 0.50 ppb(v/v) EPA-2 TO-14A 1,3-Dichlorobenzene ND 0.50 ppb(v/v) EPA-2 TO-14A 1,4-Dichlorobenzene ND 0.50 ppb(v/v) EPA-2 TO-14A Dichlorodifluoromethane ND 0.50 ppb(v/v) EPA-2 TO-14A 1,1-Dichloroethane ND 0.50 ppb(v/v) EPA-2 TO-14A 1,2-Dichloroethane ND 0.50 ppb(v/v) EPA-2 TO-14A cis-1,2-Dichloroethene 9.1 0.50 EPA-2 TO-14A ppb(v/v)trans-1,2-Dichloroethene EPA-2 TO-14A ND 0.50 ppb(v/v)1,1-Dichloroethene ND 0.50 (v/v) dag EPA-2 TO-14A 1,2-Dichloropropane ND 0.50 ppb(v/v) EPA-2 TO-14A EPA-2 TO-14A cis-1,3-Dichloropropene ND 0.50 ppb(v/v) trans-1,3-Dichloropropene ND 0.50 ppb(v/v) EPA-2 TO-14A Ethylbenzene ND 0.50 ppb(v/v) EPA-2 TO-14A Cumene ND 1.0 ppb(v/v) EPA-2 TO-14A n-Propylbenzene ND 1.0 ppb(v/v) EPA-2 TO-14A ND 0.50 ppb(v/v) EPA-2 TO-14A Styrene

0.50

0.50

0.50

0.50

EPA-2 TO-14A

EPA-2 TO-14A

EPA-2 TO-14A

EPA-2 TO-14A

ppb(v/v)

ppb(v/v)

ppb(v/v)

ppb(v/v)

ND

ND

ND

ND

1,1,2,2-Tetrachloroethane

Tetrachloroethene

1,1,1-Trichloroethane

Toluene